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Abstract—For a variety of ML applications, generalized matrix
multiply (GEMM) with DOT product is the most computationally
intensive operation. This paper presents a microarchitecture
exploration of fused multi-way reduced precision floating point
multiply-accumulate with single rounding, resulting in power
and area efficient characteristics. We propose two different
microarchitectures, implementing novel design techniques for
computing fused FP8 DOT4 accumulating to higher precision
FP32 with scaling to adjust the dynamic range. Our first design,
dot product with late accumulation, computes fused FP8 DOT4
by calculating the dot product in the first two cycles, expanding
the products to fixed point format and another two cycles for
the accumulation operation. This design allows the reuse of
a slightly modified, FMA capable, FP32 adder. Our second
design, dot product with early accumulation is implemented as a
standalone FP8 datapath computing products and accumulation
in first two cycles, and another two cycles for normalization and
single rounding operation. This design aligns addends (products
and accumulator) from an “Anchor” for efficient, arithmetically
fused, N-way FP DOT product computation. Furthermore, we
synthesized the two designs proposed in a 5nm technology node
and compared the cost of implementation.

I. INTRODUCTION

Systems for machine learning and deep learning training
are moving from floating-point single-precision 32-bit (FP32)
arithmetic to other representations with reduced precision.
Some of these representations are Tensor float 32 (TF32), with
8-bit exponent and 10-bit fraction, IEEE half-precision (FP16),
with 5-bit exponent and 10-bit fraction, and bfloat16 (BF16),
with 8-bit exponent and 7-bit fraction [1], [2].

For inference the 8-bit fixed-point INT8 representation is
a popular choice. The floating-point trained models need to
be ported to the INT8 format in a conversion step called
quantization [3]. This quantization conversion step can be
sometimes expensive.

8-bit floating-point (FP8) is the natural progression from
the 16-bit floating-point representations, reducing the compu-
tational requirements for training and providing good results
for inference as well [3].

The floating-point (FP) representation encodes a real num-
ber with a sign bit S and e-bit integer exponent E, and a f -bit
fraction F ,

x = (−1)S × 2E−B × (1 + F ) (1)

where B is the exponent bias, B = 2e−1 − 1. Note that an
implict 1, the hidden bit, is concatenated to the fraction as an
integer bit, forming the significand. A FP number with E = 0
has no implicit 1 in the significand so zero and subnormal
values can be represented. In addition, exponent E = 2e−1−1
is reserved for the representation of ±∞ and NaNs.

Recently, two encodings for FP8 binary exchange format
have been proposed [1], [2], E4M3 and E5M2; the name
states the number of exponent and fraction bits, i.e., E4M3
has 4 exponent bits and 3 fraction bits. The exponent bias
is 7 for E4M3 and 15 for E5M2. The recommended use of
FP8 encodings is E4M3 for weight and activation tensors, and
E5M2 for gradient tensors [1].

The FP8 dot-product computation is a basic operation in
several artificial intelligence algorithms. In general, the n-way
dot product is,

Rndot =

n−1∑
i=0

ai × bi (2)

Addition and multiplication are the basic floating-point op-
erations. The use of discrete FP multipliers and adders for
the dot-product calculation produces a dot-product unit with
a large area and latency. Serial multiply-addition of four
products to an accumulator would require four multipliers
and four adders, incurring area and power penalties, or four
consecutive multiply-additions on a single MAC or FMA,
incurring delay and power penalties. Area and latency can
be reduced by executing several FP operations as a single FP
operation. Several fused FP operations have been proposed,
for example fused multiply-add units [4], and fused three-
term adder [5]. The error is reduced as well because there are
no intermediate roundings. Fused operations, like FMA, often
maintain accuracy that would otherwise be lost if rounding



were followed by subtractive mass cancellation of leading
significant digits.

In training and inference there are cases where scaling
factors need to be applied to the dot product to maintain the
accuracy [1], [2]. This scaling, 2sf , with sf representing the
scaling factor, is usually applied to the dot product before it
is added to a FP accumulator.

Fused FP is widely used in the calculation of FP dot
products. In this case, other than the area and latency, it is
critical for getting a result with an affordable error. The limited
precision in the FP representation makes the FP addition
sensitive to the operand order and the error in the final result
can be significant. The dot product calculation has several
additions, and implementing it with discrete multipliers and
adders can produce an output with a large error caused by
the loss of precision in the additions and the accumulation
of rounding errors. For example, using sequential FP32 FMA
to add the products {248, 212, −248} in the given order
with round-to-nearest-even would report zero as the sum,
whereas, the sum taken with infinite precision and a single,
final rounding step (RNE) would result in 212.

Several dot-product units have been proposed recently.
However, most of the units are for datatypes of higher pre-
cision than our input FP8 precision.

Two units performing the n-way dot-product of BF16 inputs
with accumulation to FP32 are presented in [6], [7]. All the
products are first computed independently and then aligned in
a single step to the maximum product exponent, truncated to an
internal datapath width, and then converted to 2’s complement
form before being added using a large carry save adder. In
both cases a loss of precision is produced because of the
truncation of the aligned products; due to the BF16 format
used for the input operands this loss of precision could be only
avoided by using a huge internal datapath width. In addition,
the alignment step is quite costly requiring several subtractions
to compute the maximum exponent and the alignment shift
amount for each product. Some modifications to achieve an
efficient FPGA implementation are discussed in [8].

A similar unit is discussed in [9]. In this case the input
precision is not indicated but the alignment step is also
based on the computation of the maximum exponent and the
calculation of the alignment shift for each product with respect
to the maximum product exponent. The internal datapath width
is not indicated either.

Two multiprecision SIMD units are presented in [10], [11].
The unit in [10] supports FP64, FP32 and FP16, whereas the
unit in [11] supports FP64, FP32, TF32, FP16 and BF16. Note
that the FP64 dot product is just a FMA operation. To deal
with the larger precision without hitting the area several small
multipliers are used, so that a large multiplication is obtained
by combining the results of the smaller multipliers; Again, and
as discussed previously, the precisions supported lead to a loss
of accuracy and to use of complex alignment circuits.

In [12] a method for computing a correctly rounded dot
product is presented. This method, that can be applied to
any precision, relies on a new aligment technique to prevent

catastrophic cancelations and errors introduced by multi-sticky
bits. When the difference between exponents is larger than
a given threshold the bits shifted out the internal datapath
wide are moved back to used empty slots in the internal
adder. However, the aligment method implementation can be
expensive becuse it needs some additional logic to detect the
over-alignment and realign the products.

A unit for exact dot product computation with accumulation
for several 8-bit floating-point formats, FP8 and Posit8, is
described in [13]. This unit shares the target precision and
some of the design decisions with our proposals. Each product
is expanded to a fixed-point representation and added together
with a compression tree; finally, the dot-product is added to the
accumulator. Differently to the units proposed in this paper,
the accumulator is a fixed-point value; its size has been chosen
to provide guard bits for the sum compression tree, and round
it up to the next power of two. It has been considered around
4000 products to add, which correspond to 12 extra bits. That
means that the accumulator size depends on the number of
products to accumulate. The fixed-point accumulation makes
the scaling very difficult. Furthermore, a separate instruction
is required to convert the fixed-point accumulator to FP32.
Several sources report FP32 accumulation remains important
for certain GEMM calculations during mixed precision train-
ing in ML, while much of the workload may benefit from
accumulation to lesser precision [1], [14], [15], [16].

In this paper we present two different microachitectures for
the computation of fused FP8 4-way dot product (DOT4) with
scaling and accumulation to FP32 wthout any intermediate
rounding. The latency for both microarchitectures is 4 cycles.

The first design calculates the dot product in the first two
cycles, expanding the products to fixed point format, and
another two cycles for the FP32 accumulation operation. This
design allows the reuse of a slightly modified, FMA capable,
FP32 adder.

The second design is implemented as a standalone FP8
datapath and spreads the addition with the FP32 accumulator
input operand across all four cycles.

In both microarchitectures, the expensive product alignment
is avoided by using either the maximum possible dot-product
exponent, or an anchor as reference to align the products.

II. FP8 FUSED 4-WAY DOT PRODUCT WITH
ACCUMULATION

The two proposed fused dot-product units compute the fused
FP8 4-way dot product with scaling and FP32 accumulation
in four cycles. Fused means that the 4-way dot-product is not
rounded before the FP32 accumulation; instead, a wide full
precision dot-product is added to the accumulator. Then, the
addition of the four products to an accumulator is done with
only a single rounding.

Two different units for FP8 dot-product with accumulation
are discussed in this paper. The main difference between
them, in terms of the microarchitecture organization, being
how the accumulator addition is done. In the unit in section
II-A the addition to the accumulator is done in the two last



cycles, which adds flexibility to the result forwarding, and
allows to reuse a well-known, FMA capable, FP32 adder
after modification to increase the bit width of one input from
48 bits to 68 bits. This retains the FP adder functionality
for other purposes. On the other hand, the unit described
in section II-B is intended to be used as a dedicated unit,
with the accumulation spread across four cycles: shift-distance
calculation, alignment and addition, normalization, and finally
rounding.

Inputs to these datapaths are two 32-bit operands,
op1 and op2, the FP32 accumulator, acc, and a 7-bit
positive scaling factor, sf . Each 32-bit operand holds
four FP8 numbers, op1[3], op1[2], op1[1], op1[0] and
op2[3], op2[2], op2[1], op2[0]. The fused sum-of-products
(SoP) of the group of four FP8 values held in each 32-bit
element of op1 and op2 vectors is computed.

SoP = op1[3]× op2[3] + op1[2]× op2[2] +

op1[1]× op2[1] + op1[0]× op2[0] (3)

The maximum non-biased FP8 exponent is 215 and conse-
quently the maximum non-biased product and SoP exponent
are 231 and 233, respectively. The range of each FP8 input
(with non-biased exponent) is in [1.11×215, 0.01×2−14] and
therefore the product is in [1.10001000 × 231, 0.00010000 ×
2−28]. So, this fits in the FP32 dynamic range. The SoP
is scaled by 2−sf before being added without intermediate
rounding to the FP32 accumulator so that the final result is as
in (4). In this equation, rnd() signifies a floating-point rounding
operation.

res = rnd(2−sf × SoP + acc) (4)

Two FP8 formats, with different number of exponent and
significand bits, are supported, E5M2 and E4M3.

• E5M2: sign bit, 5 bits for the exponent, 2 bits for the
significand; exponent bias is 15 for an excess-15 format.

• E4M3: sign bit, 4 bits for the exponent, 3 bits for the
significand; exponent bias is 7 for an excess-7 format.

To support both formats, an intermediate 9-bit format with 5
bits for the exponent and 3 bits for the significand, and with
an exponent bias of 15 is used. Conversion to the intermediate
format is quite easy: E5M2 is converted by simply extending
the significand to 3 bits by placing a 0 in the least-significant
bit (LSB), and E4M3 is converted by extending the exponent
to 5 bits with a 0 in the most-significant bit (MSB) and adding
8 to the exponent to change from excess-7 to excess-15.

To reduce the hardware cost, several IEEE 754 features
not important for ML are not provided, including rounding
modes other than Round to Nearest Even (RNE), and precise
exception handling. However, subnormal inputs and results are
supported.

As a final remark, both datapaths can be easily adapted
to the computation of the 2-way and 8-way dot products. In
general, both units are easily scalable to n-way dot product.

A. Dot product with late accumulation
As said earlier, this unit computes the fused FP8 4-way dot

product with FP32 accumulation in four cycles: two cycles
for the 4-way dot product calculation, and two cycles for
the FP32 accumulation. It is worth pointing out that the
addition to the accumulator is done in the two last cycles,
which adds flexibility to the result forwarding, and allows to
substantially reuse a pre-existing, FMA capable FP32 adder,
after modification to increase the bit width of one input.

Figure 1 shows the unit block diagram. The conversion of
the FP8 input operands to the intermediate format is not shown
in the figure; it is assumed that every FP8 input is in the
intermediate 9-bit format.

In the first cycle the four products are obtained and the 8-bit
product significands are expanded to a 68-bit fixed-point (FX)
number with the first significant bit determined by the product
exponent. This way, the addition of the products is carried out
in the 68-bit FX format without any loss of information.

Note the carry input to each 5-bit adder for product exponent
calculation. As the sum of two excess-15 exponents produces
an excess-30 exponent, the excess-31 exponent of each product
is obtained by adding an additional 1.

The maximum exponent difference among SoPs is 59, and
the products are moved to correct locations as fixed-point
numbers depending on their exponents. This is illustrated in
Figure 2. The first product is right-aligned in the 68-bit FX
number, which corresponds to a product with the minimum
product exponent, 2−28, and the last product is left-aligned
which corresponds to a product with the maximum exponent,
231. The second and third products in the figure correspond to
intermediate exponents. As shown in the figure products can
overlap.

Note that this expansion avoids the expensive calculation of
the largest product exponent because the products are aligned
to the SoP maximum exponent.

The four FX products are added together with the 4-to-
2 reduction and the 69-bit adder. Before the reduction the
negative products are 2’s complemented: each product is sign-
conditionally inverted and the 1 required to complete the 2’s
complement is added in the reduction tree. Then, the 69-bit
adder produces the 69-bit unnormalized and 2’s complement
SoP significand.

As a consequence of the mapping of the products into the
FX variable, the product exponents are no longer needed.
Instead, the maximum SoP exponent minus the scaling factor
is associated with the SoP. Note that the SoP is added to the
FP32 accumulator, so the product exponent is converted to an
excess-127 8-bit FP32 exponent. This conversion is done in
the 8-bit subtraction by using the excess-127 maximum dot4
exponent.

In the second cycle the SoP is converted to sign-and-
magnitude (2’s complemented if negative) and normalized.
In parallel, the maximum scaled exponent is updated by
subtracting the number of leading zeros. This produces a
SoP with a FP32 range exponent and a normalized 68-bit
significand.
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Fig. 1. Block diagram of the unit for FP8 4-way dot product with FP32 accumulation. The addition to the accumulator is done in the last two cycles
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Fig. 2. 8-bit products expanded to fixed-point

Finally, the SoP is added to the accumulator in the third
and fourth cycles. For this, an FMA capable FP32 adder is
modified to accept the SoP with 68 bit significand as one
input. FMA capable adders are not uncommon. In processors
implementing FMA with separated multiplier and adder, the
multiplier returns an unrounded result comprising sign, expo-
nent and a wide significand; one of the adder inputs must have
this format [17].

B. Dot product with early accumulation

This design is implemented as a dedicated unit meaning no
reuse of existing FP arithmetic units. This design computes a

fused FP8 4-way dot product with FP32 accumulation in four
cycles: first cycle includes 4-way dot product calculation, first
part-alignment of the products to the anchor, shift amount of
the accumulator; second cycle includes final part-alignment
of the products to the anchor, summation of products to
generate full precision sum-of-products (SoP), alignment of
accumulator, and summation of the SoP and accumulator
without loss of precision; and the remaining two cycles are for
normalization and single rounding operation. This is shown in
figure 3.

In the first cycle, four products are calculated by multiplying
the significands of the four pairs of input operands using a
simple unsigned array scheme. An unlike-sign-multiply (usm)
signal is generated by XOR’ing the signs of the multiplier and
the multiplicand. Multiplier uses the usm signal to convert
intermediate products, which are in carry-save form, to signed
numbers and then uses a carry-propagate adder (CPA) to
generate a signed product. This way four 9-bit signed products
in 2’s complement form are generated.

Alignment of products to perform summation to obtain the
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Fig. 3. Block diagram of the FP8 4-way dot product standalone unit

sum-of-products (SoP) is from a fixed and precalculated bit
position called the anchor. Note that the use of an anchor
enables efficient, simultaneous, ordered alignment of multiple
floating-point addends. This is advantageous as calculation of
shift distances from the anchor results in optimized subtraction
circuits and area efficient circuitry. The anchor is optimally
chosen to accommodate the range of mass cancellation and
the maximum non-biased product exponent value is computed
as in (5).

anchor = max{Pexp}+ ⌈log2(N)⌉+ 1 (5)

Here, max{Pexp} is maximum non-biased product exponent,
and N is the number of addends.

For the FP8 E5M3 format max{Pexp} = 31. The number
of addends for 4-way DOT product is N = 4. Using (5),
the anchor is calculated as 34. The 9-bit signed products are
partially aligned by right shifting by the lower 3 bits of the
shift distance in this cycle. This conserves register bits required
to propagate the part-aligned products to the next cycle.

The 7-bit scaling factor sf is incorporated by subtracting
it from the anchor forming an 8-bit scaled anchor value.
The shift value for the significand of the FP32 accumulator is

obtained by subtracting the FP32 accumulator exponent from
the scaled anchor value. The sign of the result of this subtract
operation selects between the scaled anchor value and FP32
accumulator exponent as the exponent-major. The computed
shift distance for the accumulator is bounded by shift limits in
order to avoid excessive shifter circuitry complexity and wider
adders. After calculation of the shift distance shifting of the
accumulator is delayed to the second cycle to reduce register
count and area.

In the second cycle, the final part of the alignment of the
products to the scaled anchor value is performed. This involves
using the upper 3 bits of the shift distance to generate the 69-
bit wide aligned product values. After this alignment, these
product values are summed together with a Carry Save Adder
(CSA) to produce the SoP. The accumulator significand is
aligned in parallel with the summation of the SoP. It is shifted
to the left if the exponent of the accumulator is larger than the
scaled anchor value, and to the right if it is smaller. Notably,
the alignment of the accumulator significand is performed with
a single bi-directional shifter.

Aligning the accumulator significand to either the left or
the right is preferrable over shifting multiple addends with



smaller exponents to the right from both an area and latency
perspective. First, this obviates the need to determine an
exponent difference between the accumulator and the SoP.
Second, it can be done in parallel to the SoP formation, thus
removing logic from the critical path. Third, it prevents the
need to duplicate shifters since the SoP is still in redundant
binary form and would require two right shifters to shift both
the carry and sum values.

Finally, the SoP and accumulator values are summed to-
gether with another CSA and CPA. As previously mentioned,
the SoP and accumulator significand are shifted to their respec-
tive shifting limits so that the resulting unrounded sum can be
accurately rounded while avoiding excessive logic complexity.
For this purpose, 94-bit adders are used to compute the
unrounded fraction. Alternately, smaller adders could be used
in conjunction with an incrementer for accumulator bits shifted
left of the Anchor position.

The unrounded fraction is then normalized in the third cycle.
Since all the summands were converted to 2’s complement,
and the final fraction is a signed-magnitude number, there is a
negation circuit that computes the absolute value. This occurs
in parallel to the leading sign counting process by means
of a Leading Sign Counter (LSC) since both circuits have
logarithmic logic depth.

The absolute value of the unrounded fraction is then shifted
to the left by the leading sign count, subject to some con-
straints, and the exponent is decremented accordingly. More
specifically, zero and subnormal inputs are properly detected
and processed to calculate the correct fraction and exponent
values.

Finally, in the fourth cycle, a single rounding operation is
performed. The unrounded fraction is rounded using Round
to Nearest Even (RNE) mode and the final biased exponent is
calculated by subtracting the LSC value from the exponent-
major. The final results (rounded fraction, biased exponent,
sign) are packed in the destination floating point format.

III. EVALUATION

The aforementioned units have been implemented in a
5nm technology node targeting a frequency of 3.6 GHz.
The synthesis results for the units can be found in Table I.
In this table FP8-DOT4-LA denotes the design with “Late
Accumulation” (LA), with the area comprising the DOT4
SoP logic and modified FADD32 unit listed directly below it.
FP8-DOT4-EA denotes the design with “Early Accumulation”
(EA). Furthermore, the FADD32 split-path unit, and FADD16
and FADD32 units with FMA support have been added to
give a perspective on the scale of the proposed 4-way dot
product units. The FMA units have a widened port for one of
the operands in order to accept an unrounded multiplication
result.

As can be observed, FP8-DOT4-LA (1133 sq.um) is larger
in overall area than FP8-DOT4-EA (674 sq.um), though a sig-
nificant portion of its total area is comprised of a prospectively
reused FP32 adder. In comparison, the EA unit would co-
exist next to any pre-existing FP32 adder if both capabilities

TABLE I
SYNTHESIS RESULTS: 5NM - 3.6 GHZ

Unit Register Count Area [sq.µm]

FP8-DOT4-LA 345 1133
↪→ DOT4 SoP logic 255 572
↪→ FADD32 (Reused) 90 561
FP8-DOT4-EA 434 674

FADD32 (Split-Path) N/A 404
FADD16 for FMA N/A 215
FADD32 for FMA N/A 512

are needed. As such, the LA unit would be more suitable
in performance critical systems that already incorporate a
suitable, FMA capable FP32 adder, since it introduces a lower
incremental cost, whereas FP8-DOT4-EA would be more
suitable to be used within dedicated accelerators as a dedicated
datapath where the overall area savings are multiplicative.

IV. PARALLEL FP8 FUSED 2-WAY DOT PRODUCT WITH
ACCUMULATION

As previously mentioned, mixed precision ML computation
may benefit from reduced precision accumulation [1], [14],
[15], [16]. The computational datapaths described herein are
readily enhanced to provide parallel calculation of two FP8
fused 2-way dot products with FP16 accumulation.

First, the FP8-DOT4-LA datapath diagrammed 4 multipliers
and associated exponent logic, and shifters are reused and
partitioned into two groups; each producing two products. The
products from each of those two groups are separately summed
to form two SoP values. The existing scale factor calculation
is shared by both prospective SoP calculations. Alternately, it
may be replicated to provide separate scaling for each of the
two prospective SoP.

The diagrammed logic in cycle 2 is substantially replicated
to provide normalization and exponent calculation for the
two respective SoP. The diagrammed 2-cycle FP adder with
long SoP input is modified to provide correctly rounded FP16
output in response to a control signal. Finally, it is necessary
to provide an additional FP16 adder with long SoP input to
compute accumulation for the second FP8 fused 2-way dot
product. Usefully, such an approach allows the provided FP16,
FP32 adder functions to be repurposed for other calculations.

Considering the FP8-DOT4-EA datapath diagram, straight-
forward adaptations allow two, parallel, FP8 fused 2-way
dot products with accumulation. First, the four diagrammed
multipliers with associated exponent logic and subsequent
shifters are reused and partitioned into two groups, as just
described. Next, it is necessary to replicate the accumulator
shift calculation, considering two FP16 input accumulators,
even if they share the same scale factor.

Cycle 2 logic is substantially replicated to provide parallel
3:2 reductions of DOT2 products with respective shifted
accumulator significands, and parallel carry propagate adders.
Cycles 3 and 4 are also replicated to provide normalization,



TABLE II
SYNTHESIS RESULTS (DOT2/4): 5NM - 3.6 GHZ

Unit Register Count Area [sq.µm]

FP8-DOT2/4-LA 506 1758
↪→ DOT2/4 SoP logic 407 926
↪→ FADD32/16 (Reused) 99 832
FP8-DOT2/4-EA 624 975

rounding, and final exponent calculation for each of the DOT2
FP16 outputs.

Using such methods, our synthesized RTL produced the
following design sizes, as listed in Table II, for the modelled
LA (FP8-DOT2/4-LA) and EA (FP8-DOT2/4-EA) datapaths
configured to provide both capabilities: FP8 Fused 4-Way
Dot Product With FP32 Accumulation, and 2-Way Parallel
FP8 Fused 2-Way Dot Product With FP16 Accumulation.
Once again, the area numbers comprising the SoP logic and
modified FADD32 and FADD16 units, listed collectively as
FADD32/16, are broken down below.

V. QUALITATIVE COMPARISON TO PRIOR ART

A study of relevant prior art was provided in section I. In
this section a more detailed, qualitative comparison between
the microarchitectures described in this work, and those de-
scribed in [7] and [13] will be presented.

In [7] the authors describe a 32-way BF16 dot-product unit
that accumulates the products into an FP32 result. The authors
present latency optimizations to the alignment of the 32
products, since they identified this latency as a limiting factor
when the number of products is increased. More specifically,
the alignment is split into what is referred to as a “global”
alignment stage and a “local” alignment stage. By splitting the
alignment into two separate stages, the local alignment of the
results can be partially overlapped with the global maximum
exponent calculation. The latency reductions resulting from the
splitting of the alignment stages is then further compounded by
speculatively calculating the maximum exponent. Despite the
mentioned area overhead associated with the local alignment
optimization, the authors report that the combination of latency
optimizations were responsible for area savings of 12% for the
targeted clock frequency.

As previously mentioned, these timing difficulties with
alignment of products is avoided in the EA and LA designs
presented in this work through the use of an anchor; requiring
fewer comparators. Another important difference is that, while
the alignment latency is mitigated by the optimizations men-
tioned in [7], it is still impacted by the number of products.
By contrast, the anchor value we describe serves as a single
reference point for alignment, and circuit delays for alignment
calculation are mitigated. Finally, as previously mentioned, in
[7] the SoP calculation is truncated to optimize PPA, whereas,
our techniques for FP8 inputs (which are extensible to FP16
inputs), provide exact SoP calculations.

The authors of [13] present hardware for performing an
exact dot product operation for a variety of 8-bit floating-

point formats, including several FP8 formats and Posit8. In
the paper, the authors describe three separate units. Unit (i)
is capable of performing the dot product of 16 pairs of 8-bit
floating operands, and accumulates the result into a 2’s com-
plement FX accumulator; the exact width of which depends
on the dynamic range of the 8-bit floating point operands. Unit
(ii) performs the compression of the FX accumulator to FP32,
and unit (iii) the compression of an FP32 input to an 8-bit
floating-point output.

There is no single unit presented in [13] that performs the
same operation as the LA and EA designs. That is, unit (i)
does not take an FP32 accumulator as input, and does not
produce an FP32 result. However, the combination of units
(i) and (ii) in the E5M2 configuration would be closest in
resemblance with those designs. Regardless of the similarities
in the E5M2 configuration, there are substantial differences.
The most fundamental differences are that unit (i) does not
support the scaling of FP8 products by means of a scaling
factor, and that it uses a wider accumulator. The motivation
behind using a wider accumulator is that the authors choose an
accumulator width that is a power of two, and sufficiently wide
to allow for multiple accumulations to be performed without
causing overflows. In the E5M2 configuration the authors fixed
the width of the accumulator at 128-bits.

Due to the differences in type and width of the accumulator,
the numerical range at the output and overall latency will
be different from the designs presented in this work. More
specifically, since the LA and EA designs support FP32
inputs and a 7-bit scaling factor, their outputs cover the full
FP32 range (including subnorms and underflows), whereas the
output of unit (i) would be ±(295, 2−32]. As the accumulator
appears wider than our techniques, it appears to require larger
CPA and CSA circuits. As the accumulator appears wider than
in our designs, it appears to require larger CPA and CSA
circuits. Since various details of unit (ii) are unknown, it is not
possible to make further comments on the area and latency of
the combination of units (i) and (ii).

VI. CONCLUSIONS

Two different and novel micro-architectures for the calcula-
tion of the 4-way dot product with scaling and FP32 accumula-
tion have been presented in this paper. Both microarchitectures
have been pipelined into four stages for a target frequency of
3.6 GHz.

The main difference between the micro-architectures is how
the FP32 accumulation is done. In the first micro-architecture
the scaled dot product is obtained in the first and second
cycles, and the accumulation is done in the third and fourth
cycles; this allows repurposing an FMA capable FP32 adder
for the accumulation with minor modifications. On the other
hand, the second micro-architecture spreads the accumulation
accross the four cycles, resulting in a dedicated datapath. The
expensive product alignment is avoided by using the maximum
possible dot-product exponent (first micro-architecture) or an
anchor (second micro-architecture) as a reference for product



alignment. Both designs can be easily extended to the compu-
tation of other interesting dot products, such as the 2-way and
8-way dot products and, in general to any n-way dot product.

Both micro-architectures were synthesized in 5nm technol-
ogy, and the results revealed different use case scenarios for
each of the two. The first design can be adapted in high-
performing CPU datapaths with already existing FADD32
units, since this design yields performance benefits and comes
at a lower incremental area cost for such systems. The second
design can be adapted in dedicated accelerators where the
lower overall area cost is more beneficial.

Further implementation details were provided, in order to
demonstrate how support for two parallel 2-way dot products
accumulating into FP16 accumulators can be readily added
while subtantially repurposing logic from the 4-way dot prod-
uct datapath.

Finally, the proposed designs were compared against state-
of-the-art work in a qualitative analysis, illustrating interesting
differences in design considerations.
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